Evolutionary Patterns in Fossil Lineages

Gene Hunt Department of Paleobiology National Museum of Natural History Smithsonian Institution

Two Paradigms

Eldredge & Gould (1972)

Phyletic Gradualism

Punctuated Equilibria

Disputed Interpretations

- Same data interpreted in conflicting ways
- Inadequacy of verbal models
- Led to incompatible summaries of the subject

Evolution in Fossil Lineages

I. Fitting Statistical (not Verbal) Models II. Applications I. Evolutionary Modes 2. Tempo 3. Punctuations 4. Process Models

Evolutionary Modes

- Methods proposed to sort out different modes of evolution (e.g., Raup 1977, Bookstein 1987, Gingerich 1992, Roopnarine 2001)
- Generally rely on Random Walk as a null model

General Random Walk

+1.2

Evolutionary "steps"

step mean (μ_s) = **directionality** step variance (σ^2_s) = **volatility**

time

Phenotype

General Random Walk

Phenotype

Evolutionary "steps"

step mean (μ_s) = **directionality** step variance (σ^2_s) = **volatility**

Modeling Stasis

Simple white noise (Sheets & Mitchell 2001)
Optimum at θ, with variance of ω

 θ

time

Statistical Inference

- Expected change in phenotype is normally distributed, with mean and variance determined by model parameters & age model
- Allows calculation of likelihood = Pr[data | model]
- Maximizing likelihoods gives best parameter estimates

Models of Evolution

Comparing Models

- Models differ in complexity (# parameters)
- More parameters → higher log-likelihood
- AIC = $-2(\log L) + 2K$
- Bias-corrected form, AICc, is better
- Akaike weights represent relative support among models

Advantages

- There is no null model
- Powerful and flexible machinery
- Sampling error is correctly handled

Proportion Morphological Variance from Sampling Error

$$Mean = 44\%$$

Evolution in Fossil Lineages

I. Fitting Statistical (not Verbal) Models II. Applications I. Evolutionary Modes 2. Tempo 3. Punctuations 4. Process Models

Evolutionary Modes

Directional change

Random walk

Stasis

Data

- 251 time-series from 53 lineages
- 6 114 samples per time-series
- See Hunt (2007) PNAS 104(47).

Planktonic Microfossils foraminifera [23] radiolaria [9] conodonts [9]

<u>Benthic Microfossils</u> foraminifera [37] ostracodes [60] <u>Macrofossils</u> mollusks [70] trilobites [1] mammals [40] fish [2]

Relative Importance of Evolutionary Modes

Directional change

Shell Convexity D.16 0.18 0.20 0.22 0.16 0.18 0.20 0.22 14 13 12 11 10

Random walk

Evolution in Fossil Lineages

I. Fitting Statistical (not Verbal) Models II. Applications I. Evolutionary Modes 2. Tempo 3. Punctuations 4. Process Models

Rates of Evolution

Parameter of the Random Walk (step variance) is useful as a rate metric:

- I. uncorrelated with interval length for true random walks
- 2. known range of values under drift (Lynch 1990)
- 3. can be measured from A-D or phylogeny

Evolution in Fossil Lineages

I. Fitting Statistical (not Verbal) Models II. Applications I. Evolutionary Modes 2. Tempo 3. Punctuations 4. Process Models

Punctuations

Malmgren et al. (1983)

General form:
 stasis - change - stasis

 Class of models in which evolutionary dynamics shift over time

Does improved fit of punctuated models outweigh their greater complexity?

Two kinds of punctuations

Unsampled

Sampled

Use AICc scores to weigh model support

- Cisne et al. (1980) documented pulsed change in trilobite *Flexicalymene*
- Levinton (2001) cited it as an example of gradual change

Hunt (2008) Paleobiology 34:360.

- Cisne et al. (1980) documented pulsed change in trilobite *Flexicalymene*
- Levinton (2001) cited it as an example of gradual change

Hunt (2008) Paleobiology 34:360.

model	segments	# par	AICc	weight
Random Walk			8.01	0.375
Directional		2	10.31	0.119
Stasis		2	49.48	0.000
I Punctuation (unsampled)	2	4	7.42	0.505

Evolution in Fossil Lineages

I. Fitting Statistical (not Verbal) Models II. Applications I. Evolutionary Modes 2. Tempo 3. Punctuations 4. Process Models

Other Kinds of Models

Process-based models

- I. Causal drivers (e.g., Temperature tracking)
- 2. Adaptive evolution

Selection in Fossil Lineages

- Originally, Directional mode thought to be indicative of natural selection
- Rareness of clearly Directional was disconcerting
- Best test case: stickleback from varved lakes (Bell et al. 2006)

What should adaptive evolution look like?

Scenario: Environment shifts, population is dislocated from an adaptive peak

Directional change?

Orstein-Uhlenbeck process (Lande 1976)

time

Adaptive (OU) Model

Four key parameters

- starting phenotype
- optimal phenotype
- strength of selection
- step variance (drift)

Bell's stickleback

- ~5,000 stickleback fish from diatomite mine
- Countable yearly varves
- Resolution = 250 yrs

- Counted dorsal spines,
 pterygiophores, scored pelvis
- Independent evidence for selection for reduced armor

Numerous tests failed to find selection (directionality)

Re-analysis

- Fit adaptive (OU), and neutral drift (Random walk) models
- Adaptive models conclusively beat neutral ones (w > 0.99)

Hunt et al. (2008) Evolution 62:700.

Implications

• Consistency check: all models imply reasonable N_e

trait	Ne		
dorsal spines	575 – 4,023		
pelvic score	889 – 6,222		
pterygiophores	85I — 5,957		

- Weak selection: fitness differences \approx I 5% or less
- With coarser resolution, this would look like unsampled punctuation

Conclusions

- I. Banish the word 'gradual.' Evolution can be:
 - directional or not
 - homogeneous or heterogeneous
- 2. Directional evolution is rarely observed
- 3. Heterogeneous dynamics are not uncommon
- 4. Skeletal reduction in sticklebacks was adaptive

Conclusions I

There are many advantages to formulating evolutionary interpretations as statistical models:

- unambiguous model comparisons
- parameters are evolutionary informative (rates, directionality, natural selection)

Acknowledgments

- Thanks to R. Bambach and P. Kelley for the invitation
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution
- D. Erwin, S. Arnold, C. Marshall, A. Hendry, S. Wang, B. Hannisdal, M. Bell, D. Geary
- Mike Bell's field crew

